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Abstract9

Univalent categories constitute a well-behaved and useful notion of category in univalent foundations.10

The notion of univalence has subsequently been generalized to bicategories and other structures in11

(higher) category theory. Here, we zoom in on monoidal categories and study them in a univalent12

setting. Specifically, we show that the bicategory of univalent monoidal categories is univalent.13

Furthermore, we construct a Rezk completion for monoidal categories: we show how any monoidal14

category is weakly equivalent to a univalent monoidal category, universally. We have fully formalized15

these results in UniMath, a library of univalent mathematics in the Coq proof assistant.16
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2 Univalent Monoidal Categories

1 Introduction40

When working in univalent foundations (see [15]), definitions have to be designed carefully41

in order to correspond, via the intended semantics, to the expected notions in set-theoretic42

foundations. The notion of univalent category [3] has been shown to be a good notion, in43

the sense that it corresponds to the usual notion of category under Voevodsky’s model in44

simplicial sets [9].1 Examples of univalent categories are plentiful, but not all categories45

arising in practice—for instance when studying categorical semantics of type theory—are46

univalent. In [3], the authors give a construction of a “free” univalent category from any47

category C, which they call the Rezk completion of C.48

Since then, the univalence condition and completion operation have been studied further.49

Firstly, in [16], Van der Weide constructs a class of higher inductive types using the50

groupoid quotient. It is shown that the groupoid quotient gives rise to a biadjunction51

between the bicategory of groupoids and the bicategory of 1-types (which is isomorphic to the52

bicategory of univalent groupoids); the left adjoint thus yields a univalent completion operation53

for groupoids. Van der Weide furthermore lifts this completion to “structured groupoids”,54

that is, to groupoids equipped with an algebra structure for some endo-pseudofunctor on55

(univalent) groupoids.56

Secondly, the univalence condition on categories was extended to bicategories in [2] and57

to other (higher-)categorical structures in [5]. In more detail, [5] develops a notion of theory58

for mathematical structures, and a notion of univalence for models of such theories.59

Thirdly, univalent displayed graphs are used in [6] to define and study higher groups.60

In the present paper, we continue the study of univalent (higher-)categorical structures,61

focusing on monoidal categories. Monoidal categories are very useful in a variety of contexts,62

such as quantum mechanics [8] and computing [7], modeling concurrency [11], probability63

theory [13] and probabilistic programming [12], and neural networks [10]. We present two64

results on monoidal categories:65

1. We show that the bicategory of univalent monoidal categories is univalent. Here, a66

univalent monoidal category is a univalent category with a monoidal structure.67

2. We construct, for any monoidal category, a monoidal Rezk completion. It is, in particular,68

a univalent monoidal category; the challenge lies in establishing the universal property of69

a Rezk completion, here modified for monoidal categories.70

Both results have been formalized in the UniMath library of univalent mathematics, based71

on the Coq proof assistant.72

The first of these results may be considered to be a basic sanity check; failing to prove this73

would question the validity of our definitions. However, its proof is technically difficult, and,74

in our experience, only feasible through the disciplined application of “displayed” technology75

as developed in [4] and [2].76

The second result consists, more specifically, of a lifting of the Rezk completion for77

categories as constructed in [3] to the monoidal structure. As such, it also relies on dis-78

played technology: the equivalence expressing the universal property of our monoidal Rezk79

completion is given as a displayed equivalence on top of the equivalence constructed in [3].80

Our work is strongly related to some of the work mentioned above.81

1 To emphasize that univalent categories are the right notion of category in univalent foundations, they
are just called “categories” in [3].

https://github.com/UniMath/UniMath
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Firstly, an instance of Van der Weide’s work covers monoidal groupoids; see [16, Sec-82

tion 6.7.4]. Compared to that work, our work discusses monoidal categories rather than83

groupoids, but does not cover general structures. In particular, we also provide a completion84

operation for lax and oplax monoidal categories. Work on the “pushout” of our and Van der85

Weide’s work, a Rezk completion for structured categories, is ongoing (see also Section 5).86

Secondly, [5, Example 8.7] studies monoidal categories. It is shown there that the general87

univalence condition on a model of the theory of monoidal categories defined in that work88

simplifies, in the case of monoidal categories, to the underlying category being univalent.89

Thus, the univalent monoidal categories of [5, Example 8.7] are the same as the ones studied90

in the present work.91

In the remainder of the introduction, we review the Rezk completion and displayed92

(bi)categories, respectively. We also give some details about the formalization.93

▶ Notation 1. In order to stay consistent with the notation used in UniMath , we write the94

composition in diagrammatic order, i. e., the composition of f : x → y and g : y → z is95

denoted as f · g : x → z.96

1.1 Review of the Rezk Completion for Categories97

The Rezk completion for categories was constructed in [3]. In essence, given a category98

C, its Rezk completion is given by a univalent category RC(C) and a weak equivalence99

H : C → RC(C). It has the following property: any functor F : C → E , with E a univalent100

category, factors uniquely via H, as depicted in the following diagram.101

C

RC(C) E

FH

∃!

(1)102

▶ Remark 2. The universal property satisfied by the Rezk completion is a bicategorical one,103

see Definition 4. From a purely category-theoretic viewpoint, the factorization in Equation (1)104

is unique up to natural isomorphism. However, since E is univalent, the functor category105

[RC(C), E ] is also univalent. Therefore, the lifting of a functor is unique.106

In [3], it is said that the construction gives a universal way to replace a category by a107

univalent category. This construction is indeed universal in a bicategorical sense, according108

to the following lemma:109

▶ Lemma 3 ([3, Thm. 8.4], precomp_adjoint_equivalence). Let H : C → D be a weak110

equivalence between categories. For any univalent category E, the functor H · (−) : [D, E ] →111

[C, E ] is an adjoint equivalence of categories.112

In order to see that the Rezk completion is indeed a universal object, recall that a113

biadjunction can be expressed as a certain adjoint equivalence of hom-categories:114

▶ Definition 4 (left_universal_arrow). A pseudo-functor R : B2 → B1 has a left biadjoint115

if for any object x : (B1)0 there is a left universal arrow from x to R:116

1. an object L x : (B2)0,117

2. a morphism ηx : B1(x, R(L x));118

3. for any y : (B2)0, the functor119

ηx · (R −) : B2(L x, y) → B1(x, R y) ,120

whose action on objects is f 7→ ηx · R f and whose action on morphisms is α 7→ ηx ◁ R α,121

is an adjoint equivalence of categories.122

https://github.com/UniMath/UniMath
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.PrecompEquivalence.html#precomp_adjoint_equivalence
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.PseudoFunctors.UniversalArrow.html#left_universal_arrow
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Therefore, Lemma 3 means precisely that the Rezk completion of a category C gives a123

left universal arrow from C to the forgetful functor from the bicategory CatUniv of univalent124

categories, functors, and natural transformations to the bicategory Cat of categories, functors,125

and natural transformations.126

1.2 Review of Displayed (Bi)Categories127

In this section, we recall the basic concepts of displayed bicategories and their univalence.128

More information can be found in [1].129

Let us first briefly recall the idea of displayed categories.130

Many concrete examples of categories are given by structured sets and structure-preserving131

functions. An example of this is the category Mon of monoids and monoid homomorphisms.132

In particular, an identity morphism is an identity function (i. e., the identity morphism in133

Set) and the composition of monoid homomorphisms is given by the composition of the134

underlying functions (i. e., the composition in Set). Therefore, working in a category of135

structured sets often means lifting structure of the category Set to the additional structure.136

An example of this phenomenon is the product of monoids: the underlying set of a product137

of monoids can be constructed as the product of the underlying sets (Example 5).138

The notion of displayed category formalizes the process of creating a new category out139

of an old category by adding structure and/or properties on the objects and/or morphisms in140

the following way: a displayed category ([4, Def. 3.1]) specifies precisely the extra structure141

and the extra laws needed to build the new category out of the old one. This new category142

is then called the total category of the displayed category ([4, Def. 3.2]).143

▶ Example 5. The category Mon of monoids can be constructed as a total category over144

Set as follows:145

1. For X : Set, the type of displayed objects over X is the type of monoid structures on X:146 ∑
m:X×X→X

∑
e:X

isAssociative(m) ×
∏
x:X

(e · x = x × x · e = x) ,147

where isAssociative(m) is the proposition witnessing that m is associative.148

2. Assume given X, Y : Set, f : Set(X, Y ) and (mX , eX , pX) (resp. (mY , eY , pY )) displayed149

object over X (resp. Y ), i. e., the structure of a monoid. The type of displayed morphisms150

over f is the proposition witnessing that f is a monoid homomorphism from (mX , eX , pX)151

to (mY , eY , pY ):152

(f eX = eY ) ×
∏

x1,x2:X
f (mX(x1, x2)) = mY (f x1, f x2).153

Analogously, there is also the notion of a displayed bicategory:154

▶ Definition 6 ([1, Def. 6.1], disp_bicat). Let B be a bicategory. A displayed bicategory155

D over B consists of:156

1. for any x : B, a type Dx of displayed objects over x,157

2. for any f : B(x, y) and x̄ : Dx and ȳ : Dy, a type Df (x̄, ȳ) of displayed morphisms over f ,158

3. for any α : B(x, y)(f, g) and f̄ : Df (x̄, ȳ) and ḡ : Dg(x̄, ȳ), a set f̄
α=⇒ ḡ of displayed159

2-cells over α;160

together with a composition of displayed morphisms and displayed 2-cells (over the composition161

in B) and a displayed identity morphism and 2-cell (over the identity morphism resp. 2-cell162

in B). The axioms of a bicategory have corresponding displayed axioms (over those axioms163

in B).164

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat


K. Wullaert, R. Matthes, and B. Ahrens 5

▶ Definition 7 ([1, Def. 6.2], total_bicat). Let D be a displayed bicategory over B. The165

total bicategory of D, denoted as
∫

D, has as i-cells (with i = 0, 1, 2), pairs (x, x̄) where x166

is an i-cell of B and x̄ is a displayed i-cell of D over x.167

▶ Example 8. The bicategory whose objects are categories equipped with a terminal object,168

whose morphisms are functors preserving the terminal objects (strongly) and whose 2-cells169

are natural transformations, can be constructed as the total bicategory over Cat as follows:170

1. For C : Cat, the type of displayed objects over Cat is the type witnessing that C has a171

terminal object:172 ∑
X:C

isTerminal(X).173

2. Assume given C, D : Cat, F : Cat(C, D) and (TC , pC) (resp. (TD, pD)) displayed objects174

over C (resp. D). The type of displayed morphisms over F is the proposition witnessing175

that F preserves the terminal object:176

isIsomorphism(!),177

where ! is the unique morphism F TC → TD given by the universal property of the terminal178

object TD.179

3. Let F, G : Cat(C, D) be functors between categories C and D and assume:180

a. (TC , pC) (resp. (TD, pD)) a witness that C (resp. D) has a terminal object, i. e., it is a181

displayed object over C (resp. D),182

b. µF (resp. µG) a proof witnessing that F (resp. G) preserves the terminal object strongly,183

i. e., µF (resp. µG) is a displayed morphism over F (resp. G).184

For any natural transformation α : F ⇒ G, the type of displayed 2-cells is the unit type.185

Given displayed bicategories D1 and D2 over a bicategory B, we construct the product186

D1×D2 over B. The displayed objects, morphisms, and 2-cells are pairs of objects, morphisms,187

and 2-cells, respectively (disp_dirprod_bicat).188

A displayed bicategory is locally (resp. globally) univalent if the canonical function from189

the equality type of displayed morphisms (resp. displayed objects) to the type of displayed190

isomorphisms (resp. displayed adjoint equivalences) is an equivalence of types. A displayed191

bicategory is univalent if it is both locally and globally univalent (disp_univalent_2,192

disp_univalent_2_0, disp_univalent_2_1).193

▶ Lemma 9 ([1, Thm. 7.4], total_is_univalent_2). Let D be a displayed bicategory over B194

and q ∈ {locally, globally}. Then
∫

D is q-univalent if B is q-univalent and D is q-univalent.195

▶ Remark 10. As witnessed by Lemma 9, certain properties of the total bicategory can be196

expressed in terms of the base bicategory and the displayed bicategory. This allows one to197

divide a problem, in this case showing univalence, into multiple steps.198

Therefore, while we are interested in studying the total bicategory, we usually only199

describe the displayed bicategory.200

1.3 Formalization in UniMath201

The results presented here are formulated inside intensional dependent type theory. We202

carefully distinguish between data and properties, i. e., data is always explicitly given which203

avoids the use of the axiom of choice and the law of excluded middle. The results presented204

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Prod.html#disp_dirprod_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_0
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_1
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#total_is_univalent_2
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here are formalized and checked in the library UniMath of univalent mathematics, based on205

the proof assistant Coq [14].206

The formalization referred to in this paper is presented in the UniMath commit 6d2d288.207

An HTML documentation of this commit is hosted online. Most of our definitions, lemmas,208

and theorems are accompanied by a link which leads to the corresponding definition, lemma,209

and theorem in the documentation.210

The formalization is built upon the existing library of (bi)category theory and the theory211

of displayed (bi)categories. The (1-)categorical formulation of displayed categories has been212

developed in [4] and the bicategorical formulation has been developed in [2].213

The accompanying code, specific to this work, consists of approximately 7000 lines of214

code. However, the formalisation also made it necessary to contribute to the UniMath library215

on monoidal categories more generally.216

2 The Bicategory of Monoidal Categories217

In this section we construct the bicategory MonCat (resp. MonCatstg) of monoidal cat-218

egories, lax (resp. strong) monoidal functors and monoidal natural transformations. We219

construct this bicategory as the total bicategory of a displayed bicategory over the bicategory220

Cat of categories, functors, and natural transformations.221

This displayed bicategory in itself is constructed by stacking different displayed bicat-222

egories. This can indeed be done because, e. g., the tensor product and unit object can be223

defined independently from, e. g., the unitors.224

▶ Remark 11. Although the construction of MonCat (resp. MonCatstg) is standard (when225

working in univalent foundations), we explain the construction in quite some detail because226

both Section 3 and Section 4 heavily depend on the construction of monoidal categories227

(resp. lax/strong monoidal functors and natural transformations) in this displayed way. In228

particular, this allows us to fix notation and allows for the big picture of the constructions229

to become more visible.230

The first displayed bicategory we construct adds the structure of a tensor and a unit.231

Since the unit and tensor are (without the unitors) independent of each other, we can define232

this as the product of displayed bicategories, the first representing the tensor and the second233

representing the unit.234

▶ Definition 12 (bidisp_tensor_disp_bicat). The displayed bicategory CatT over Cat235

is defined as follows:236

1. The displayed objects over a category C : Cat are the functors of type C × C → C, called237

tensors over C and are denoted by ⊗C.238

2. The displayed morphisms over a functor F : C → D from ⊗C to ⊗D are the natural239

transformations of type (F × F ) · ⊗D ⇒ ⊗C · F , called witnesses of tensor-preservation of240

F .241

3. The displayed 2-cells over a natural transformation α : F ⇒ G from µF to µG are the242

proofs of the proposition243 ∏
x,y:C

(αx ⊗D αy) · µG
x,y = µF

x,y · αx⊗Cy .244

▶ Definition 13 (bidisp_unit_disp_bicat). The displayed bicategory CatU over Cat is245

defined such that:246

https://github.com/UniMath/UniMath
https://coq.inria.fr
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/tree/6d2d288264d28f2d1966bb518de180d73e1c5e47
https://github.com/UniMath/UniMath
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_bicat


K. Wullaert, R. Matthes, and B. Ahrens 7

1. The displayed objects over a category C : Cat are the objects of C, called units over C and247

are denoted by IC.248

2. The displayed morphisms over a functor F : C → D from IC to ID are the morphisms of249

type D(ID, F IC), called witnesses of unit-preservation of F .250

3. The displayed 2-cells over a natural transformation α : F ⇒ G from ϵF to ϵG are the251

proofs of the proposition252

ϵF · αIC = ϵG .253

We denote by CatT U the displayed bicategory which is the product of CatT and CatU254

(bidisp_tensor_unit).255

To fix some notation: The total bicategory
∫

CatT U has as objects triples (C, ⊗C , IC)256

where C is a category, ⊗C a tensor on C and IC a unit on C. A morphism from (C, ⊗C , IC)257

to (D, ⊗D, ID) is a triple (F, µF , ϵF ) where F is a functor of type C → D, µF a witness of258

tensor-preservation of F and ϵF a witness of unit-preservation of F .259

We now add the unitors and the associator. Since they are independent of each other260

(before adding the triangle and pentagon equalities), we can again define them as a product261

of displayed bicategories. These displayed bicategories have trivial displayed 2-cells since262

monoidal natural transformations only use the data of the tensor and the unit. Thus we263

define these displayed bicategories as displayed categories. The formal construction of264

turning a displayed category into a displayed bicategory with trivial 2-cells is formalized as265

disp_cell_unit_bicat.266

▶ Definition 14 (bidisp_lu_disp_bicat). The displayed bicategory CatLU over
∫

CatT U267

is defined as the displayed category (with trivial 2-cells) such that:268

1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type269

Cat(IC ⊗C −, IdC), called left unitors over (C, ⊗C , IC) and are denoted by λC.270

2. The displayed morphisms over a triple (F, µF , ϵF ) from λC to λD are proofs of the271

proposition:272 ∏
x:C

(ϵF ⊗D IdF x) · µF
IC,x · FλC

x = λD
F x .273

▶ Definition 15 (bidisp_ru_disp_bicat). The displayed bicategory CatRU over
∫

CatT U274

is defined as the displayed category (with trivial 2-cells) such that:275

1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type276

Cat(− ⊗C IC , IdC), called right unitors over (C, ⊗C , IC) and are denoted as ρC.277

2. The displayed morphisms over a triple (F, µF , ϵF ) from ρC to ρD are proofs of the propos-278

ition:279 ∏
x:C

(IdF x ⊗D ϵF ) · µF
x,IC

· FρC
x = ρD

F x .280

▶ Definition 16 (bidisp_associator_disp_bicat). The displayed bicategory CatA over281 ∫
CatT U is defined as the displayed category (with trivial 2-cells) such that:282

1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type283

Cat((− ⊗C −) ⊗C −, − ⊗C (− ⊗C −)), called associators over (C, ⊗C , IC) and are denoted284

as αC.285

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorUnitLayer.html#bidisp_tensor_unit
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_lu_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_ru_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_ass_disp_bicat
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2. The displayed morphisms over a triple (F, µF , ϵF ) from αC to αD are proofs of the286

proposition:287 ∏
x,y,z:C

(µF
x,y ⊗D IdF z) · µF

x⊗Cy,z · FαC
x,y,z = αD

F x,F y,F z · (IdF x ⊗D µF
y,z) · µF

x,y⊗Cz .288

We denote by CatUA the displayed bicategory over
∫

CatT U which is the product of289

CatLU , CatRU and CatA (bidisp_assunitors_disp_bicat).290

▶ Definition 17 (disp_bicat_univmon). The displayed bicategory CatP is the full displayed291

sub-bicategory of CatUA specified by the product of the following predicates:292

1. Triangle equality:293 ∏
x,y:C

αx,I,y · Idx ⊗ λy = ρx ⊗ Idy .294

2. Pentagon equality:295 ∏
w,x,y,z:C

(αw,x,y ⊗ Idz) · αw,x⊗y,z · Idw ⊗ αx,y,z = αw⊗x,y,z · αw,x,y⊗z .296

▶ Definition 18 (disp_bicat_univstrongfunctor). The displayed bicategory CatS is the297

(non-full) displayed sub-bicategory of CatP where the displayed morphisms are proofs of the298

proposition299

isIso(ϵ) ×
∏

x,y:C
isIso(µx,y) .300

The bicategory of monoidal categories, lax (resp. strong) monoidal functors, and monoidal301

natural transformations is denoted by MonCat :=
∫

CatP (resp. MonCatstg :=
∫

CatS).302

Their constructions are summarized in the following figure:303

CatS

CatP

CatUA

CatLU CatRU CatA

CatT U

CatU Cat CatT

304

▶ Remark 19. An object in MonCat is of the form (((C, ⊗, I), λ, ρ, α), tri, pent). In this305

form, however, it is not immediate (for, e. g., a proof assistant) that such an object is a306

category with extra structure. Therefore we consider in the formalization not MonCat as307

defined above, but we have applied the sigma construction (sigma_bicat) in order for an308

object to be of the form (C, (((⊗, I), λ, ρ, α), tri, pent)). Switching between these bicategories309

does not change the overall message of this paper, although there are some extra steps that310

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univmon
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univstrongfunctor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_bicat
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we have to take in order to conclude that the constructed displayed bicategory in this way is311

univalent.312

Another difference with the formalization is that in the formalization of CatLU (resp.313

CatRU , CatA), we do not yet require a left unitor (resp. right unitor, associator) to be an314

isomorphism. Since being an isomorphism is a proposition, we could and did add these three315

(indexed) conditions only in the formalization of CatP .316

In Section 4, we construct a Rezk completion for monoidal categories. We are interested317

in studying the hom-categories of MonCat and thus, in particular, the displayed hom-318

categories. We now introduce some notations. Let B be a bicategory and x, y : B objects.319

The hom-category from x to y is denoted by B(x, y). Any morphism f : B(x, y) induces a320

functor between hom-categories, more precisely:321

▶ Definition 20. Let B be a bicategory, f : B(x, y) a morphism and z : B an object. The322

functor given by precomposition with f and target object z is the functor323

f · (−) : B(y, z) → B(x, z) ,324

where the action on the objects is given by precomposition, i. e., g 7→ f · g, and the action on325

the morphisms is given by left whiskering, i. e., α 7→ f ◁ α.326

We also refer to the functor given by precomposition with f as the precomposition functor327

with f .328

Let D be a displayed bicategory over B and x̄ ∈ Dx and ȳ ∈ Dy be displayed objects. The329

(total) hom-category
∫

D((x, x̄), (y, ȳ)) can be constructed as a total category of a displayed330

category over B(x, y). We denote this displayed category by D(x̄, ȳ) (so we use the same331

notation for the hom-categories and displayed hom-categories).332

In particular, the precomposition functor w. r. t. the total bicategory
∫

D of a morphism333

(f, f̄) can be defined as a displayed functor over the precomposition functor f · (−) (w. r. t.334

B) where we precompose/left whisker (in the displayed sense) with f̄ :335

▶ Definition 21. Let D be a displayed bicategory over a bicategory B, x̄ : Dx, ȳ : Dy displayed336

objects, f̄ : Df (x̄, ȳ) a displayed morphism and z̄ : Dz a displayed object. The displayed337

functor given by precomposition with f̄ and target displayed object z̄ is the displayed338

functor339

f̄ · (−) : D(ȳ, z̄) → D(x̄, z̄)340

over the functor given by precomposition with f .341

We also refer to the displayed functor given by precomposition with f̄ as the displayed342

precomposition functor with f̄ .343

3 The Univalent Bicategory of Monoidal Categories344

In this section we present our proof of the fact that the bicategory of univalent monoidal345

categories is univalent. In this proof, we rely heavily on the displayed machinery built in [2],346

for modular construction of bicategories, and proofs of their univalence.347

In the formalization of this univalence proof, we have not used the formalization of a348

monoidal category as presented above. Instead, we have changed the definition of a tensor349

from being a functor to a more explicit, unfolded definition. It is not necessarily obvious that350

the resulting bicategory is indeed that of monoidal categories, lax (resp. strong) monoidal351
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functors, and monoidal natural transformations. Therefore, we construct an equivalence of352

types of monoidal categories as presented above on the one hand and using this explicit353

definition on the other hand (cmonoidal_to_noncurriedmonoidal, cmonoidal_adjequiv_354

noncurried_hom).355

Recall from Lemma 9 that the total bicategory of a displayed bicategory is univalent if356

the base bicategory is univalent and the displayed bicategory is univalent. Since CatUniv is357

univalent, it therefore reduces to showing that ΣΣCatT U
CatUA

CatP from the previous section358

is univalent. (This is to be read modulo the repackaging described in Remark 19.)359

The sigma construction of univalent displayed bicategories is univalent provided that360

both displayed bicategories are locally groupoidal (i. e., all displayed 2-cells are invertible)361

and locally propositional (i. e., each type of displayed 2-cells is a proposition). The previously362

defined displayed bicategories are locally propositional since they either express an (indexed)363

equality of morphisms or the type of 2-cells is the unit type. Thus in this section, we show364

that the displayed bicategories from Section 2 are univalent and locally groupoidal.365

▶ Remark 22. In this section we implicitly restrict the displayed bicategories to the bicategory366

CatUniv of univalent categories, e. g., CatT U is considered as the pullback of the displayed367

bicategory CatT U along the inclusion of CatUniv into Cat.368

▶ Lemma 23 (tensor_disp_is_univalent_2). CatT is univalent.369

Proof. CatT is locally univalent by a straightforward calculation, we therefore only discuss370

that it is globally univalent.371

Let ⊗1, ⊗2 be two tensors on C. We have to show that idtoiso2,0
⊗1,⊗2

is an equivalence of372

types. In order to show this, we factorize this function as follows:373

⊗1 = ⊗2 DispAdjEquiv(⊗1, ⊗2)

tensorEq(⊗1, ⊗2) tensorIso(⊗1, ⊗2)

idtoeq

idtoiso2,0
⊗1,⊗2

eqtoiso

,374

where tensorEq(⊗1, ⊗2) is the type375 ∑
α:

∏
x,y:C

,x⊗1y=x⊗2y

∏
f :C(x1,y1),g:C(x2,y2)

f ⊗1 g = f ⊗2 g ,376

where the equality f ⊗1 g = f ⊗2 g is dependent over αx1,y1 and αx2,y2 .377

The type tensorIso(⊗1, ⊗2) is the same as tensorEq(⊗1, ⊗2) where we replaced the first378

equality by an isomorphism (and the dependent equality of morphisms is replaced by pre-379

and post-composing with the isomorphism).380

The function idtoeq : ⊗1 = ⊗2 → tensorEq(⊗1, ⊗2) forgets the proofs of the properties of381

the tensor. Because our hom-types are sets, this is an equivalence. The function eqtoiso :382

tensorEq(⊗1, ⊗2) → tensorIso(⊗1, ⊗2) exists because each identity induces an isomorphism.383

Since C is a univalent category, it is indeed an equivalence. Since a displayed adjoint384

equivalence in CatT translates into the notion of tensorIso(⊗1, ⊗2), we construct in a385

straightforward manner a function from tensorIso(⊗1, ⊗2) to DispAdjEquiv(⊗1, ⊗2), which is386

for the same reason an equivalence. ◀387

▶ Lemma 24 (tensor_disp_locally_groupoidal). CatT is locally groupoidal.388

Proof. CatT being locally groupoidal means that if a natural isomorphism α preserves the389

tensor, then so does its inverse. This is immediate since the tensor product of isomorphisms390

is again an isomorphism (by functoriality of the tensor). ◀391

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_to_noncurriedmonoidal
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_prebicat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_locally_groupoid


K. Wullaert, R. Matthes, and B. Ahrens 11

▶ Lemma 25 (unit_disp_is_univalent_2). CatU is univalent.392

Proof. CatU is locally univalent by a straightforward calculation. Therefore, we only discuss393

why it is globally univalent.394

Let I, J : C be objects representing a unit object. As with the tensor layer, we factorize395

idtoiso2,0
I,J and show that each function in the factorization is an equivalence. The factorization396

is given by:397

I = J DispAdjEquiv(I, J)

I ∼= J

idtoiso2,0
I,J

398

The definition of a displayed adjoint equivalence in this displayed bicategory translates399

precisely to an isomorphism in the underlying category C, which gives us the arrow to the400

right and a proof that it is an equivalence. The left arrow is given by idtoisoI,J and is an401

equivalence precisely because C is a univalent category. ◀402

▶ Lemma 26 (unit_disp_locally_groupoidal). CatU is locally groupoidal.403

▶ Lemma 27 (assunitors_disp_is_univalent_2). CatUA is univalent.404

Proof. Since the product of univalent displayed bicategories is univalent, it remains to show405

that CatLU , CatRU and CatA are univalent.406

These displayed bicategories are locally univalent because the type of (displayed) 2-cells407

is the unit type and the type of (displayed) 1-cells is a proposition.408

Since the type of (displayed) morphisms (resp. objects) is a proposition (resp. a set), it409

remains to show that given a category equipped with a tensor, unit and left unitors λ1, λ2410

(resp. right unitors and associators), then λ1 = λ2 under the assumption that the identity411

functor has a proof witnessing that the identity functor from (C, ⊗, I, λ1) to (C, ⊗, I, λ2) (and412

vice versa) preserves the left unitor. This is immediate. ◀413

▶ Lemma 28 (assunitors_disp_locally_groupoidal). CatUA is locally groupoidal.414

Proof. This follows from the following lemmas:415

1. The product of locally groupoidal displayed bicategories is locally groupoidal.416

2. A displayed bicategory whose type of displayed 2-cells is the unit is locally groupoidal.417

◀418

Since a full displayed sub-bicategory of a univalent displayed bicategory is univalent, we419

conclude:420

▶ Lemma 29 (tripent_disp_is_univalent_2). CatP is univalent.421

Since the full displayed sub-bicategory of a displayed locally groupoidal bicategory is422

locally groupoidal, we have that CatP is locally groupoidal.423

▶ Theorem 30 (UMONCAT_is_univalent_2). The bicategory of univalent monoidal categories,424

lax monoidal functors, and monoidal natural transformations is univalent.425

▶ Lemma 31 (UMONCAT_disp_strong_is_univalent_2). CatS is univalent.426

Proof. This follows immediately from Theorem 30 since the type of displayed 1-cells is a427

mere proposition. ◀428

▶ Theorem 32 (UMONCAT_strong_is_univalent_2). The bicategory of univalent monoidal429

categories, strong monoidal functors, and monoidal natural transformations is univalent.430

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_prebicat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_is_disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_tripent_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#UMONCAT_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univstrongfunctor_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#UMONCAT_strong_is_univalent_2
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4 The Rezk Completion for Monoidal Categories431

Some constructions of (monoidal) categories do not yield univalent (monoidal) categories. For432

instance, categories built from syntax usually have sets of objects; the presence of non-trivial433

isomorphisms in such a category hence entails that it is not univalent. Another example434

is when constructing colimits of univalent monoidal categories; the usual construction of435

such a colimit often yields a non-univalent monoidal category. In such cases, a “completion436

operation”, turning a monoidal category into a univalent one, is handy.437

In this section we construct, for each monoidal category, a free univalent monoidal438

category, which we call the monoidal Rezk completion. More precisely, we solve the following439

problem:440

▶ Problem 33. Given a Rezk completion H : C → D of a category C and a monoidal structure441

M := (⊗, I, λ, ρ, α) on C, to construct a monoidal structure M̂ := (⊗̂, Î , λ̂, ρ̂, α̂) on D and a442

strong monoidal functor H : (C, M) → (D, M̂) such that for any univalent monoidal category443

(E , N), the isomorphism of categories444

H · (−) : Cat(D, E) → Cat(C, E)445

lifts to the category of lax (resp. strong) monoidal functors:446

H · (−) : MonCat((D, M̂), (E , N)) → MonCat((C, M), (E , N)) .447

Once solved, we call (D, M̂) the monoidal Rezk completion of (C, M). Analogous to448

the Rezk completion for categories, the monoidal Rezk completion exhibits the bicategory449

MonCatUniv (resp. MonCatstg
Univ) as a reflective full sub-bicategory of MonCat (resp.450

MonCatstg).451

Although any categorical structure on a category can be transported along an equivalence452

of categories such that they become equivalent in the corresponding bicategory of structured453

categories, this might not be the case if one considers a weak equivalence. On the way454

towards solving Problem 33, we show, in particular, how to transport a monoidal structure455

along a weak equivalence of categories, provided that the target category is univalent. That456

construction is not limited to the specific weak equivalence given by the Rezk completion.457

Analogous to the univalence proof of MonCatUniv (resp. MonCatstg
Univ) given in Section 3,458

we rely on the theory of displayed categories in order to solve this problem by dividing it459

into subgoals. In each of the subgoals, we use the same strategy. In Section 4.1, we explain460

the strategy in detail for the subgoal of equipping D (resp. H : C → D) with a tensor (resp.461

tensor-preserving structure).462

4.1 The Rezk Completion of a category with a tensor463

Let C be a category and H : C → D a Rezk completion of C. Let ⊗ : C × C → C be a functor.464

In this section we equip D with a functor ⊗̂ : D × D → D such that465

1. H has the structure of a strong tensor-preserving functor, i. e., we have a natural iso-466

morphism µH : (H × H) · ⊗̂ ⇒ ⊗ · H.467

2. The precomposition functor of (H, µH) is an isomorphism of categories.468

▶ Definition 34 (TransportedTensor, TransportedTensorComm). The lifted tensor ⊗̂ on469

D is the lift of ⊗ · H along the weak equivalence H × H : C × C → D × D, i. e., ⊗̂ is a functor470

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#TransportedTensor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#TransportedTensorComm
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together with a natural isomorphism:471

D × D

C × C D

C

µH

⊗̂H×H

⊗ H

472

▶ Remark 35. The natural isomorphism is labelled as µH because this natural isomorphism473

is precisely the structure we need to have that H is a (strong) tensor-preserving functor.474

▶ Lemma 36 (HT_eso). Let E be a univalent category and ⊗E : E × E → E be a functor. The475

displayed precomposition functor (Definition 21) µH · (−) with target displayed object ⊗E is476

displayed split essentially surjective. Consequently, the precomposition functor (H, µH) · (−)477

with target object (E , ⊗E) between the tensor-preserving functor categories is merely essentially478

surjective on objects.479

Proof. Let G : D → E be a functor and µH·G a natural transformation witnessing that H · G480

is a lax tensor-preserving functor. We have to construct a natural transformation witnessing481

that G is a lax tensor-preserving functor, i. e., we have to define a natural transformation482

µG : (G × G) · ⊗E ⇒ ⊗̂ · G .483

Since H × H is a weak equivalence and E is univalent, it suffices to define a natural484

transformation of type485

(H × H) · (G × G) · ⊗E ⇒ (H × H) · ⊗̂ · G .486

Thus we define µG as the lift of the natural transformation:487

D × D E × E

C × C C D E

D × D

G×G

µH·G ⊗EH×H

⊗

H×H

H
(µH)−1

G

⊗̂

488

For a detailed proof that µH·G is (displayed) isomorphic to the (displayed) composition of489

µH and µG, we refer the reader to the formalization. ◀490

▶ Lemma 37 (HT_ff). Let E be a univalent category and ⊗E : E × E → E be a functor.491

The displayed precomposition functor µH · (−) is displayed fully faithful. Consequently, the492

precomposition functor (H, µH) · (−) between the tensor-preserving functor categories is fully493

faithful.494

Proof. It is displayed faithful because the type witnessing that a natural transformation495

preserves a tensor is a mere proposition. In order to show that it is displayed full, notice496

that we have to show an equality of morphisms, i. e., a proposition. Therefore, we are able497

to use that H × H is merely essentially surjective on objects which allows us to work with498

objects in C instead of D which leads to the result. ◀499

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#HT_eso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#HT_ff
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▶ Theorem 38 (precomp_tensor_catiso). A category equipped with a tensor admits a Rezk500

completion: Let (E , ⊗E) :
∫

CatT . If E is univalent, then501

(H, µH) · (−) :
∫

CatT ((D, ⊗̂), (E , ⊗E)) →
∫

CatT ((C, ⊗), (E , ⊗E))502

is an isomorphism of categories.503

Proof. First notice that both categories are univalent, indeed: since E is univalent, so are504

Cat(D, E) and Cat(C, E) and in Section 3, we have proven that the displayed bicategory505

CatT is locally univalent, i. e., the displayed hom-categories are univalent. So in order to506

show the result, it suffices to show that this functor is a weak equivalence, i. e., fully faithful507

and merely essentially surjective on objects. Fully faithfulness can always be concluded if508

both the functor on the base categories and the displayed functor are. However, in general it509

is not sufficient to conclude that a total functor is essentially surjective on objects if this510

holds on the base and at the displayed level. Fortunately, it does hold under the condition511

that the base category and displayed category of the codomain are univalent. So we conclude512

the result from combining the assumption that H is a weak equivalence and lemmas 37 and513

36. ◀514

▶ Remark 39. The strategy introduced in this section will be repeated in the next section, so515

we refer back to this section for the necessary details (if needed).516

4.2 The Rezk Completion of a category with a tensor and unit517

In Section 4.1, we have shown how the structure of a tensor ⊗ on C transports/lifts along a518

weak equivalence H : C → D to a tensor on a univalent category D. Furthermore, H has the519

structure of a strong monoidal functor and that (D, ⊗̂) is universal in a certain sense, i. e.,520

objects in
∫

CatT admit a Rezk completion.521

In this section, we show the same result holds when we add the choice of an object to a522

category, playing the role of the tensorial unit. This construction is trivial, but we will also523

discuss how we can conclude that objects in
∫

CatT U admit a Rezk completion.524

As before, let H : C → D be a weak equivalence from a category C to a univalent category525

D. Let I : C, thus (C, I) :
∫

CatU . Clearly we have (H, IdH I) : CatU ((C, I), (D, H I)).526

By the same reasoning as in Section 4.1, in order to conclude that (D, H I) is universal,527

we have to show that for any (E , IE) : CatU with E univalent, the displayed precomposition528

functor529

IdH I · (−) : CatU (Î , IE) → CatU (I, IE)530

is displayed fully faithful and displayed split merely essentially surjective on objects.531

▶ Lemma 40 (HU_eso). The displayed precomposition functor (Definition 21) ϵH · (−)532

with target displayed object IE is displayed split essentially surjective. Consequently, the533

precomposition functor (H, ϵH) · (−) with target object (E , IE) between unit tensor-preserving534

functor categories is merely essentially surjective on objects.535

Proof. It is merely surjective since the witness, expressing that the weak equivalence preserves536

the unit, is an identity morphism. ◀537

▶ Lemma 41 (HU_ff). The displayed precomposition functor ϵH · (−) is displayed fully538

faithful. Consequently, the precomposition functor (H, ϵH) · (−) between the unit-preserving539

functor categories is fully faithful.540

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_tensor_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit.html#HU_eso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit.html#HU_ff
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Proof. It is displayed faithful since the type of 2-cells is a property. It is displayed full as541

it follows immediately from the assumptions since the witness expressing that the weak542

equivalence preserves the unit is an identity morphism. ◀543

Using the exact same reasoning used in Theorem 38, we conclude:544

▶ Theorem 42 (precomp_unit_catiso). A category equipped with a unit admits a Rezk545

completion: Let (E , IE) :
∫

CatU . If E is univalent, then546

(H, ϵH) · (−) :
∫

CatU ((D, Î), (E , IE)) →
∫

CatU ((C, I), (E , IE))547

is an isomorphism of categories.548

So we have proven that objects in CatT and CatU admit a Rezk completion. From these549

results, we conclude that objects in CatT U admit a Rezk completion:550

▶ Theorem 43 (precomp_tensorunit_catiso). Let (E , ⊗E , IE) : CatT U . If E is univalent,551

then552

(H, µH, ϵH) · (−) :
∫

CatT U ((D, ⊗̂, Î), (E , ⊗E , IE)) →
∫

CatT U ((C, ⊗, I), (E , ⊗E , IE))553

is an isomorphism of categories, i. e., objects in
∫

CatT U admit a Rezk completion.554

Proof. Since the product of univalent displayed bicategories is again univalent, both the555

domain and codomain of this functor are univalent. Hence, by the same argument as in556

Theorem 38, it reduces to prove that the displayed precomposition functor is a displayed557

weak equivalence. The displayed precomposition functor is the product of the displayed558

precomposition functors of µH resp. ϵH. Since the product of displayed weak equivalences is559

again a weak equivalence, the result now follows. ◀560

4.3 The Rezk Completion of a category with a tensor, unit, unitors and561

associator562

In this section, we prove that every object in
∫

CatLU (resp. CatRU and CatA) has a Rezk563

completion.564

As above, we let H : C → D be a weak equivalence from a category C to a univalent565

category D, C is equipped with a tensor ⊗ and a unit I. The lifted tensor on D is denoted by566

⊗̂ and Î := H I. The witness that H preserves the tensor (resp. unit) (strongly) is denoted567

by µH (resp. µH = IdH I).568

Before lifting a left unitor from C to D, we first define a natural isomorphism stating that569

the weak equivalence preserves tensoring with the unit object (on the left):570

▶ Lemma 44 (LiftPreservesPretensor). There is a natural isomorphism H · (Î ⊗̂ −) ⇒571

(I ⊗ −) · H.572

Proof. This is given by the following composition:573

C D

C × C D × D

C D

H

(I,−) (Î,−)
H×H

⊗ ⊗̂

H

µH

574

where the upper square is given by a trivial equality of functors. ◀575

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_unit_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_tensorunit_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#LiftPreservesPretensor
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▶ Definition 45 (TransportedLeftUnitor). Let λ be a left unitor on (C, ⊗, I), i. e., (C, ⊗, I, λ) :576

CatLU . The lifted left unitor λ̂ on (D, ⊗̂, Î) is the lift along H of the natural isomorphism577

given by the vertical composition of the natural isomorphism defined in Lemma 44 and λ ▷ H.578

An immediate calculation shows:579

▶ Lemma 46 (H_plu). H preserves the left unitor.580

▶ Theorem 47 (precomp_lunitor_catiso). The objects in
∫

CatLU admit a Rezk comple-581

tion:582

Let (E , ⊗E , IE , λE) :
∫

CatLU . If E is univalent, then (H, µH, ϵH, pluH) · (−) of type583 ∫
CatLU ((D, ⊗̂, Î, λ̂), (E , ⊗E , IE , λE)) →

∫
CatLU ((C, ⊗, I, λ), (E , ⊗E , IE , λE))584

is an isomorphism of categories, where pluH is a witness that H preserves the left unitor (as585

provided by Lemma 46).586

Proof. As before, it reduces to show that the displayed precomposition functor (Definition 21)587

is a displayed weak equivalence. It is displayed fully faithful since the type of 2-cells in588

CatLU is the unit type. We now show that it is displayed split essentially surjective on589

objects. Let G : D → E be a lax tensor and unit preserving functor such that H · G preserves590

the left unitor. We have to show that G also preserves the left unitor. Since we have to show591

a proposition, the claim now follows from combining the essentially surjectiveness of H and592

then applying the assumption on H · G. ◀593

Completely analogous is the case of right unitor:594

▶ Theorem 48 (precomp_runitor_catiso). The objects in
∫

CatRU admit a Rezk comple-595

tion.596

In order to prove that every object in
∫

CatA has a Rezk completion, we use an analogous597

trick as is used for objects in, e. g.,
∫

CatLU . An associator for (D, ⊗̂) is a natural isomorphism598

between functors of type (D × D) × D → D. Since the product of weak equivalences is599

again a weak equivalence, such a natural isomorphism corresponds uniquely to a natural600

isomorphism between functors of type (C × C) × C → D. As with the left unitor, the lifted601

natural isomorphism does not have the same type as the associator on C. In the case of the602

left unitor, we only had to provide a natural isomorphism to match the domain, but for the603

associator, we furthermore need a natural isomorphism to match the codomain.604

▶ Theorem 49 (precomp_associator_catiso). The objects in
∫

CatA admit a Rezk com-605

pletion.606

4.4 The Rezk Completion of a monoidal category607

In this section, we are able to conclude that the objects in MonCat and MonCatstg admit608

a Rezk completion.609

In the previous sections, we have lifted all the structure of a monoidal category to a610

weakly equivalent univalent category.611

However, it still remains to show that the lifted structure (D, ⊗̂, Î, λ̂, ρ̂, α̂) satisfies the612

properties of a monoidal category if (C, ⊗, I, λ, ρ, α) does.613

▶ Lemma 50 (TransportedTriangleEq, TransportedPentagonEq). The lifted monoidal614

structure satisfies the pentagon and triangle equalities: If the triangle (resp. pentagon) equality615

holds for (C, ⊗, I, λ, ρ, α), then it also holds for (D, ⊗̂, Î, λ̂, ρ̂, α̂).616

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#TransportedLeftUnitor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#H_plu
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_lunitor_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_runitor_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_associator_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedMonoidal.html#TransportedTriangleEq
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedMonoidal.html#TransportedPentagonEq
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▶ Theorem 51 (precomp_monoidal_catiso). Any monoidal category admits a Rezk com-617

pletion (considered in the bicategory of lax monoidal functors).618

Proof. By the same argument as in Theorem 43, we know that the precomposition functor619

w. r. t.
∫

CatUA is an isomorphism of categories since it holds for CatLU , CatRU and CatA.620

Since the hom-categories in CatP are the terminal category, the displayed precomposition621

functor (Definition 21) w. r. t. CatP is clearly a weak equivalence which concludes the622

proof. ◀623

Next, we prove that any monoidal category admits a Rezk completion in the bicategory624

of strong monoidal functors. Concretely, we show the following theorem:625

▶ Theorem 52 (precomp_strongmonoidal_catiso). Let C be a monoidal category and D626

the Rezk completion of C as constructed in Theorem 51. If E is a univalent monoidal category,627

then628

H · (−) : MonCatstg(D, E) → MonCatstg(C, E)629

is an isomorphism of categories.630

Proof. First note that H is indeed strong monoidal by the definition of µH and ϵH. Hence,631

the statement is well-defined.632

As before, we have to conclude that the displayed precomposition functor (Definition 21)633

((µH)−1, (ϵH)−1) · (−) is fully faithful and split essentially surjective.634

The displayed precomposition functor is fully faithful since every type of displayed 2-cells635

in MonCatstg is the unit type.636

The displayed precomposition functor is split essentially surjective on objects since the637

lift of a natural isomorphism is a natural isomorphism. ◀638

5 Conclusion639

We have studied (the bicategory of) monoidal categories in univalent foundations. First,640

we showed that the bicategory of univalent monoidal categories is univalent. Second, we641

constructed a Rezk completion for monoidal categories; specifically, we lifted the Rezk642

completion for categories to the monoidal structure. Our technique also works for lax and643

oplax monoidal categories, with minimal modifications. We have not presented this work644

here, but the UniMath code is available online.2645

The second result provides a blueprint for constructing completion operations for “cat-646

egories with structure”. By “structure”, we mean categorical structure such as functors647

and natural transformations. Here, the main challenge is to define a suitable notion of648

signature that allows us to specify structure on a category. Work on this topic will be649

reported elsewhere.650
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