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Abstract6

The development of category theory in univalent foundations and the formalization thereof is an7

active field of research. In univalent foundations, one can distinguish different flavours of categories.8

The most prominent of those is the notion of a univalent category, where identities and isomorphisms9

of objects coincide. One consequence hereof is that equivalences and identities coincide for univalent10

categories. In particular, structure on categories transfer along equivalences of univalent categories.11

A key aspect in the study of univalent categories is the Rezk completion, which allows us to construct12

univalent categories from non-univalent ones.13

In this work, we present a modular framework for extending the Rezk completion from categories14

to categories with structure. We demonstrate the modularity of our framework by lifting the Rezk15

completion from categories to elementary topoi in manageable steps.16
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1 Introduction24

In this work, we continue the development of category theory in univalent foundations [17].25

One of the central notions herein is that of a univalent category, which has the advantage26

that structures are invariant under equivalences and that structures defined via universal27

properties become unique up to identity. A key facet in the theory of univalent categories28

is the Rezk completion, which provides a construction to obtain univalent categories from29

non-univalent categories. We present a framework for extending the Rezk completion from30

categories to categories with structure.31

Univalent foundations Univalent foundations are foundations in which structure and32

property are invariant under equivalence. The axiomatic system underpinning univalent33

foundations is dependent type theory, which provides the basis for various proof assistants34

and provides internal languages for categories.35

One of the key features of UF is how equality of types is handled. The underlying type36

theory already gives equality. In UF, however, one assumes the so-called univalence axiom37

(UA), which states that identities (equalities) of types coincide with equivalences of types.38

The original semantics of UF is in the category of simplicial sets [10].39

The univalence axiom indeed guarantees that structures are invariant under equivalence40

[5, 6]. Furthermore, UA implies a variety of extensionality principles, such as function41

extensionality, which implies that equality of algebraic structures coincides with isomorphism42

of algebraic structures, and is incompatible with uniqueness of identity proofs.43
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Univalent categories In univalent foundations, one can distinguish different flavours of44

categories. Categories contain a type of objects and a dependent family of morphisms.45

Usually, however, one considers additional requirements due to non-trivial identity types.46

This leads to two notions of category: set-categories and univalent categories. While both47

correspond to categories in the simplicial set model, univalent categories arise naturally in48

univalent foundations.49

Set-categories behave more like categories in the traditional (classical) sense. Univalent50

categories, however, are specific to univalent foundations, relying on the non-trivial identity51

types and the univalence axiom.52

Univalent categories are categories for which identities of objects and isomorphisms of53

objects coincide [2]. The univalence condition on categories is often very desirable and54

is motivated by various examples. In the simplicial set model, the univalence condition55

corresponds to the completeness condition of Segal spaces. Furthermore, between univalent56

categories, the different notions of “sameness” all coincide. These notions of sameness are57

equivalences, isomorphisms, and identities. In particular, structures on univalent categories58

also transport along equivalences between them.59

The univalence condition extends suitably to many categorical structures, such as bic-60

ategories [1], monoidal categories [23], and enriched categories [19]. In [5, 6], a univalence61

condition has been formulated for higher-categorical structures, generalizing in particular62

the aforementioned structures.63

The Rezk completion Various constructions on categories, however, often produce non-64

univalent categories. For example, the construction of the Kleisli category via Kleisli65

morphisms [19] and the Cauchy completion when constructed via objects and idempotent66

morphisms [18] generally produce a non-univalent category, even if the category we start67

with is univalent. Furthermore, the tripos-to-topos construction, a fundamental construction68

in topos theory, generally produces a non-univalent category [9, 13].69

In [2], Ahrens, Kapulkin, and Shulman, constructed for every category a univalent category70

which is equivalent, in a weak sense, to the original category. This construction is referred to71

as the Rezk completion.72

Even though the Rezk completion provides a way to obtain a univalent category, for some73

constructions, you want the Rezk completion to have additional structure. For example,74

although one can apply the Rezk completion to the output of tripos-to-topos construction,75

one still needs to construct a topos structure on the Rezk completion for this to extend to a76

tripos-to-univalent-topos construction.77

Goal In this work, we present a framework to extend the Rezk completion from categories78

to structured categories. The framework is designed to be modular and applicable to a variety79

of structures that a category can possess. To test our framework, we consider elementary80

topoi since they are categories with a variety of structures. While elementary topoi are our81

case study, our technique is general and can be used to lift Rezk completions to other classes82

of structured categories as well.83

1.1 Contributions84

The contributions of this paper are as follows:85

1. In Section 3, we define displayed universal arrows (Definition 8), and we give a technique86

to construct displayed universal arrows over the Rezk completion (Proposition 10).87
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2. In Section 4, we use the technique of Section 3 to construct the Rezk completion of88

various classes of structured categories, among which are elementary topoi (Theorem 12).89

In addition, the results in this paper are formalized using UniMath [21]. We recall the90

material necessary to understand this paper in Section 2.91

1.2 Formalization92

Most of the results presented here are formalized in the Rocq -library UniMath on univalent93

mathematics [16, 21]. The logic underlying the UniMath library is an intensional dependent94

type theory whose universes satisfy the univalence axiom. We do not rely on the axiom of95

choice nor the law of excluded middle. We also rely propositional truncation.96

The formalization, and this paper, makes heavily use of the already existing material97

on (bi)category theory in the UniMath -library and the accompanied literature [2, 1]. The98

environments annotated with a denote that the result is formalized. Upon clicking , the99

reader is directed towards the HTML documentation. The commit number from which the100

documentation is generated is 94b49c3.101

2 Preliminaries102

In this section, we give a brief introduction to univalent foundations and the development103

of category theory therein. A comprehensive introduction to univalent foundations can be104

found in e. g. , [17, 14].105

2.1 Univalent Foundations106

Univalent foundations is a version of dependent type theory where types are identified if they107

are equivalent. As a consequence, structure and property are invariant under equivalences,108

and all kind of mathematical structures are identified up to isomorphism.109

Type theory in a nutshell We assume that the reader is familiar with the basics of dependent110

type theory, and for a complete reference we reader the reader to [12]. Here we recall the111

notation necessary for the remainder of the paper.112

The basic building blocks of type theory are types and terms. Types are denoted by113

A, B, . . ., and we write a : A for a term a of type A.114

In our type theory, we have various type formers. In particular, types constitutes a115

type, denoted U , i.e., A : U . To avoid paradoxes, there is actually a hierarchy of universes.116

Furthermore, functions from A to B are terms in the function type A → B. If A is a type117

and B : A → U a type family, we denote by
∏

a:A B(a) and
∑

a:A B(a) the type of dependent118

functions and dependent pairs respectively. Finally, given a type A and terms a, b : A, we119

denote the identity type as a = b or a =A b.120

Univalence axiom The univalence axiom is a property for universes and characterizes their121

identity types. Let U be a universe and A, B : U terms. Then we can consider the identity122

type A =U B. While terms in A =U B witness that A and B are the same, one can consider123

a weaker notion of sameness: equivalence.124

An equivalence from A to B is a function with a left and right inverse and the type125

of equivalences is denoted A ≃ B. There is a function idtoweqA,B : (A =U B) → (A ≃ B)126

which sends the reflexivity path to the identity equivalence. The universe U satisfies the127

univalence axiom if idtoweqA,B is an equivalence of types for every A, B : U .128
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The univalence axiom implies a variety of extensionality principles, such as function129

extensionality which says that identities of functions correspond to pointwise identities [17].130

Homotopy levels In our type theory, identity types can contain more than one element.131

Hence, types can be classified up to the complexity of their identity types. Let A be a type.132

Then A is contractible if A is equivalent to the unit type. The type A is a proposition, if133

a = b is contractible for every a, b : A. If for all a, b : A the type a = b is a proposition, then134

A is a set.135

The propositional truncation of a type A is the smallest proposition ∥A∥ with a map136

from A to ∥A∥. More precisely, for a type A, there is a proposition ∥A∥ which is universal137

among all propositions. That is, if B is a proposition and there is a function A → B, then138

we also have a function ∥A∥ → B. This allows us to distinguish between chosen structure139

and structure that merely exists. More precisely, if B : A → U is a type family, then we say140

that there exists an a : A such that B holds if ∥
∑

a:A B(a)∥ is inhabited.141

2.2 Categories in Univalent Foundations142

In traditional/set-based mathematics, a category C consists in particular of a set of objects C0143

and for every two objects x and y in C0, a set of morphisms x → y. Furthermore, a category144

is equipped with composition operation on the morphisms and identity morphisms which are145

associative and unital. There are multiple translation hereof into univalent foundations. A146

naive translation hereof into univalent foundations is to replace sets by types. Of course,147

one can replace sets by the (UF) sets, but even the category of sets and functions does not148

satisfy this criteria. Nonetheless, if the types have arbitrary homotopy levels, then one would149

need to empose higher coherence conditions.150

To ensure that equalities of morphisms are propositions, each x → y is assumed to be151

a set. In [2], such categories are referred to as precategories, but we will simply call them152

categories.153

A univalent category is a category for which identities and isomorphisms between154

two objects coincide. More precisely, let C be a category and denote by (x ∼= y) the155

type of isomorphisms from x to y, for x, y : C0. By path induction, we have a function156

idtoisox,y : (x = y) → (x ∼= y). Then a category C is univalent if idtoisox,y is an equivalence157

of types, for every x, y : C0. In particular, this implies that every x = y is a set.158

Many examples of categories are univalent. Examples include the category Set of sets159

and functions, presheaf categories, and categories of algebraic structures, such as groups and160

rings.161

▶ Notation 1. Composition is written in diagrammatic order. That is, if f : x → y and162

g : y → z are morphisms, we denote by f · g their composite.163

2.3 The Rezk Completion for Categories164

Even though many categories are univalent, a variety of constructions do not produce165

univalent categories. For example, there are two constructions of the Kleisli category, either166

via Kleisli morphisms or via free algebras. While the latter construction always produce a167

univalent category, the former does not [19]. An analogous observation holds for the Cauchy168

completion of a category [18]. Indeed, if one construct the Cauchy completion as a full169

subcategory of the presheaf categories, one obtains a univalent category. In particular, if170

one starts with a not-necessarily univalent category, then the presheaf construction gives171

a univalent category. However, if one constructs the Cauchy completion as objects in the172
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initial category together with an idempotent morphism we do not have a univalent category,173

not even when the category started with is univalent.174

The tripos-to-topos construction does, in general, not produce univalent categories [13, 9].175

Furthermore, as opposed to the previous examples, there does not seem to be alternative176

equivalent construction hereof which does produce univalent topoi.177

Nonetheless, there is a general construction to find a suitable univalent replacement for178

these categories, known as the Rezk completion. In this section, we recall the main theory179

of the Rezk completion. First, we recall the definition of the Rezk completion in Definition 2.180

Then we recall the universal property characterizing the Rezk completion in Proposition 3181

and how this property can be described 2-categorically (Corollary 4). Lastly, in Remark 5182

we zoom in on how the Rezk completion can be constructed and how Corollary 4 needs to183

be adapted to take into account the construction details. The Rezk completion provides a184

universal solution to making a category univalent [2]. In [2], it is proven that the universal185

property of the Rezk completion can be characterized in terms of weak equivalences.186

A functor F : C1 → C2 is essentially surjective if for every object y : C2 in the codomain,187

there merely exists an object x : C1 in the domain, and an isomorphism of type F x ∼= y.188

Furthermore, an essentially surjective functor F is a weak equivalence if F is fully faithful.189

▶ Definition 2 (Rezk completion). A category D is a Rezk completion for C if D is univalent190

and there is a weak equivalence from C to D.191

That the Rezk completion indeed satisfies the universal property of the free univalent192

completion follows more generally from the following proposition.193

▶ Proposition 3 ( Thm 8.4. [2]). Let G : C0 → C1 be a weak equivalence between not-194

necessarily univalent categories. Then for every univalent category C2, the precomposition195

functor (G · −) : Cat(C1, C2) → Cat(C0, C2) is an adjoint equivalence of univalent categories.196

In particular, this means that every functor into a univalent category can be extended197

along a weak equivalence, unique up to a natural isomorphism.198

C0 C1

C2

G

∀F ∃!H
199

Furthermore, Rezk completions are unique up to an equivalence of categories. Due to200

univalence, Rezk completions are unique up to identity. Hence, for every category, its type201

of Rezk completions is a proposition. Thus we can say the Rezk completion.202

To extend the Rezk completion to categories with structure, we consider (structured)203

categories as objects in a bicategory. One advantage hereof, is that we can treat structures204

uniformly and, in particular, we obtain modular constructions. Such an approach is indeed205

possible because the universal property can be phrased by saying that the inclusion of206

univalent categories into all categories has a left biadjoint.207

Recall that a pseudofunctor R : B1 → B2 has a left biadjoint L if we have a function208

L : B2 → B1, a family of morphisms η :
∏

X:B2
X → R(L(X)) called the unit, and for209

every X : B2 and Y : B1, the functor ηX · R(−) : B1(L X, Y ) → B2(X, R Y ) is an adjoint210

equivalence of categories.211

Let Cat be the bicategory of categories, functors, and natural transformations. Denote212

by Catuniv the full subbicategory of Cat consisting of those categories that are univalent.213
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▶ Corollary 4. Assume that for every category C a Rezk completion RC(C) is given, whose214

weak equivalence is denoted ηC : C → RC(C). Then the inclusion of Catuniv into Cat has a left215

biadjoint RC : Cat → Catuniv. In particular, the action on objects is given by C 7→ RC(C), and216

the unit is pointwise given by ηC.217

There are various constructions of the Rezk completion. However, there are some subtleties218

if we want to use Corollary 4 for them.219

▶ Remark 5 (On the construction of RC(C)). Ahrens, Kapulkin, and Shulman, showed that the220

Rezk completion of C can be constructed as a full subcategory of its category of presheaves221

[Cop, Set] [2]. More precisely, the Rezk completion be can be constructed as the replete222

full subcategory RCp(C) of representable presheaves, and the weak equivalence is given by223

restricting the Yoneda embedding.224

The representable presheaf -construction provides a general construction of the Rezk225

completion. Nonetheless, the category RCp(C) lives in a higher universe level (see below). In226

concrete instances, one often has an alternative construction available that does not increase227

the universe level. For the Rezk completion, this can be done via higher inductive types [17].228

For our purposes, lifting Rezk completions, the precise implementation of the Rezk229

completion is not relevant. Nonetheless, if we use the representable presheaf-construction,230

Corollary 4 has to be suitable adapted.231

Recall that there is a hierarchy of universes and let Uk the universe at level k. Denote by232

Cat(i,j) the type of categories whose type of objects is in U (i) and where every C(x, y) is in233

Uj . Then, for C : Cat(i,j) we have RCp(C) : Cat(i∨(j+1),i∨j), where ∨ is the least upperbound234

of universe levels. Hence, RCp does not induce a pseudofunctor of type Cat(i,j) → Cat(i,j)
univ .235

To take into account that the representable presheaf-construction raises the universe level,236

one can rephrase Corollary 4 in terms of relative left pseudoadjoints [7]. Instead, one can say237

that RCp is a J-relative left pseudoadjoint to ι as depicted in following diagram:238

Cat(i∨(j+1),i∨j)
univ

Cat(i,j) Cat(i∨(j+1),i∨j)

ιRCp

J

239

3 On the Lifting of Biadjoints240

Our goal is to lift the Rezk completion from categories to categories with additional structure,241

such as finitely complete categories. More precisely, we lift the left biadjoint to bicategories242

whose objects are structured categories and whose morphisms are structure preserving243

functors. In this section, we reduce the problem of lifting the Rezk completion in terms of244

weak equivalences, and we provide the general methodology we use.245

The reduction step builds forth on the theory of displayed bicategories which provides246

a modular approach to the construction of bicategories and allows for a modular proof247

technique of e. g. , proving univalence for categories. We recall the necessary ingredients of248

this theory in Section 3.1 and we define the notion of displayed universal arrows in Definition 8249

which gives a modular construction of (left) biadjoints, as witnessed by Proposition 9. In250

Section 3.2, we then apply Proposition 9 to obtain a formal description of the reduction step251

in Proposition 10.252
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3.1 Displayed Universal Arrows253

In the remainder of this paper, we make heavy use of displayed bicategories, and we start254

by recalling this notion. Displayed bicategories serve various purposes, and one of these,255

is that we can use them to modularly construct bicategories and to modularly prove their256

univalence [1, 3]. To understand what displayed bicategories are, let us first recall an257

example of a displayed category. We can construct the category Mon of monoids and monoid258

homomorphisms by endowing the objects and morphisms of Set with extra structure and259

properties. Specifically, for every set there is a type of monoid structures on it, and for260

every function between sets with monoid structures on them we have a type expressing261

that this function is a homomorphisms. One must also prove that the identity function262

is a homomorphism, and that homomorphisms are closed under composition. Displayed263

categories generalize such descriptions of categories. Specifically, in a displayed category D264

over a category C, we have a type D(x) of displayed objects over every object x : C and a set265

x̄ →f ȳ of displayed morphisms for every morphism f : x → y and displayed objects x̄ : D(x)266

and ȳ : D(y). Displayed bicategories generalize displayed categories to the bicategorical267

setting, meaning that they also have displayed 2-cells with suitable compositions, associators,268

unitors, and coherences.269

In Section 4 we consider various bicategories of structured categories. The objects of270

these bicategories are categories equipped a structure that is characterized by a universal271

property, the morphisms are functors which preserve this structure up to isomorphism. The272

2-cells of these bicategories are all natural transformations. To construct such bicategories,273

we use a simplified version of displayed bicategories compared to [1]. Specifically, assume274

that the types of 2-cells are unit types, and we define them as follows.275

▶ Definition 6 ( ). Let B be a bicategory. A displayed bicategory with contractible 2-cells276

D over B consists of277

1. for every x : B, a type D(x); whose terms are called displayed objects;278

2. for every f : B(x, y), x : D(x), and y : D(y), a type x →f y; whose terms are called279

displayed morphisms;280

3. for every x : B and x : D(x), a displayed morphism of type x →idx
x;281

4. for every f : x →f y and g : y →g z, a displayed morphism of type x →f ·g z.282

Observe that no axioms are required since the axioms are phrased in terms of 2-cells.283

The total bicategory of D, denoted
∫

D, is the bicategory whose objects are (dependent)284

pairs (x, x), with x : B and x : D(x). The morphisms are pairs (f, f) with f : B(x, y) and285

f : x →f y. The 2-cells are the 2-cells in B.286

In the remainder of the paper, we assume that the types of 2-cells for each of our displayed287

bicategories is contractible. In particular, a displayed pseudofunctor between such displayed288

bicategories reduces to:289

▶ Definition 7 ( ). Let F : B1 → B2 be a pseudofunctor and Di a displayed bicategory over290

Bi, for i = 1, 2. A displayed pseudofunctor over F consists of:291

1. for every x : B1, a function F̂ : D1(x) → D2(F x);292

2. for every f : B1(x, y) and x : D1(x), y : D1(y), a function F̂ : (x →f y) → (F̂ x →F f F̂ y);293

The assignment (x, x) → (F x, F̂ x) bundles into a pseudofunctor
∫

R
R̂ :

∫
D1 →

∫
D2, and294

is referred to as the total pseudofunctor.295

The following definition makes precise what is needed to lift a (left) biadjoint to displayed296

bicategories. For the definition of displayed adjoint equivalence between (1-)categories, we297
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refer the reader to the formalization (also see pages 8-9 in [3], and [1] for such equivalences298

between displayed bicategories).299

▶ Definition 8 ( ). Let R be a pseudofunctor from B1 to B2 with a left biadjoint (L, η).300

Let R̂ be a displayed pseudofunctor from D1 to D2, over R. A (left) displayed universal301

arrow for R̂ (over (R, L, η)) consists of:302

1. L̂ :
∏

x:B2
D2(x) → D1(L x), we write L̂(x) := L̂(x, x);303

2. a family η̂x : x →η x R̂(L̂(x)) of displayed morphisms, for all (x, x) in
∫

D2;304

and such that the displayed functor between displayed hom-categories305

η̂x · R̂(−) : D1(L̂ x, y) → D2(x, R̂ y),306

is a displayed adjoint equivalence whose base of displayment is the adjoint equivalence ηx ·R(−)307

given by (R, L, η).308

▶ Proposition 9 ( ). Let (R̂, L̂, η̂) be a displayed universal arrow for (R, L, η). Then the309

total pseudofunctor
∫

R
R̂ :

∫
B1

D1 →
∫

B2
D2, has a left biadjoint.310

3.2 Displayed Universal Arrows over the Rezk Completion311

In the remainder of this section, we apply Proposition 9 to reduce the lifting of the biadjunction312

in terms of weak equivalences and is made precise in Proposition 10.313

Let D be a displayed bicategory over Cat. Then, D can be restricted to Catuniv by taking314

the (2-)pullback as depicted in the following diagram:315 ∫
Duniv

∫
D

Catuniv Cat
U

⌟

ι

U

ι

(1)316

▶ Proposition 10 ( ). Let D be a displayed bicategory over Cat such that for every weak317

equivalence G : C0 → C1, whose codomain is univalent, we have:318

1. for x : D(C0), there is a x̂ : D(C1) and a Ĝ : x →G x̂;319

2. for every univalent category C2, functors F : C0 → C2 and G : C1 → C2, and a natural320

isomorphism α : G ·H ⇒ F , if xi : D(Ci) and F̄ : x0 →F x2, then there is a Ḡ : x1 →G x2.321

Then the pseudofunctor RC : Cat → Catuniv lifts to a left biadjoint for
∫

Duniv →
∫

D.322

▶ Remark 11 ( ). In Section 4, we stack displayed bicategories to obtain the displayed323

bicategory of elementary topoi. Proposition 10 works directly over Cat, and not over a total324

bicategory
∫

Cat D. Nonetheless, if E is a displayed bicategory over
∫

Cat D, the total bicategory325 ∫∫
Cat

D E is equivalent to a displayed bicategory over Cat by applying the
∑

construction for326

displayed bicategories ([1, Definition 6.6]). In particular, if D and D′ are both displayed327

bicategories over Cat, we can form their product, which is again a displayed bicategory over328

Cat.329

4 The Rezk Completion Lifted To Topoi330

In this section, we prove that the Rezk completion lifts from categories to categories equipped331

with structures defined via universal properties. In particular, we conclude that the Rezk332

completion for categories preserves many categorical structures. More precisely, we lift the333

biadjoint in Corollary 4 from categories to categories with the structures depicted in Figure 1,334

which allows us to conclude that the Rezk completions lifts from categories to topoi:335

https://anonymousdocs-cb.github.io/CSL2026_unimath_doc/HtmlDoc_94b49c3/UniMath.CategoryTheory.DisplayedCats.Equivalences.html#is_equiv_over
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https://anonymousdocs-cb.github.io/CSL2026_unimath_doc/HtmlDoc_94b49c3/UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow.html#total_left_universal_arrow
https://anonymousdocs-cb.github.io/CSL2026_unimath_doc/HtmlDoc_94b49c3/UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat.html#make_disp_left_universal_arrow_if_contr_CAT_from_weak_equiv
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▶ Theorem 12 ( ). Let Topel be the bicategory of elementary topoi, logical functors, and336

natural transformations, and denote by (Topel)univ its full subbicategory on elementary topoi337

whose underlying category are univalent. Then the inclusion (Topel)univ ↪→ Topel has a left338

biadjoint RCtop. In particular:339

1. the Rezk completion of an elementary topos E is an elementary topos RCtop(E);340

2. the weak equivalence ηE : E → RCtop(E) is a logical functor;341

3. and, (RCtop(E), ηE) is universal among the univalent elementary topoi.342

Furthermore, if E has a parameterized natural numbers object (NNO) then RCtop(E) has an343

NNO, ηE preserves the NNO, and universality lifts to elementary topoi with NNOs.344

exponentials natural numbers object subobject classifier

binary products terminal object pullbacks

no structure

P rop. 25 P rop. 27
P rop. 23

P rop. 18
P rop. 18

P rop. 17

Figure 1 Tower Of Structures

(a) The labels of the vertices refer to the result stating the lifting.

To prove that the Rezk completion and the left biadjoint lift from categories to each345

of the structures we apply Proposition 10. That is, we prove that the two assumptions in346

Proposition 10 are satisfied. To do this, we take the following approach:347

1. First, we show that given a weak equivalence, with possibly the assumption of univalence348

on the codomain, a structure on the domain transports onto the image of the codomain.349

From this, condition 1 is a direct consequence due to the properties of weak equivalences350

and possibly the univalence requirement which guarantees that the type witnessing the351

structure on the codomain is a proposition.352

2. Second, to conclude condition 2, we first prove that weak equivalences reflect the structure.353

Then we apply essential surjectivity to work directly in the image of the weak equivalence354

and hence in the domain of the weak equivalence.355

In Section 4.1, we spell out the approach and most of the details to conclude the Rezk356

completion for categories with pullbacks. The proof for the other structures follow the same357

approach.358

For readability, we use the following notation:359

▶ Notation 13. The concrete bicategories we consider are constructed as displayed bicategories360

over Cat. For readability, we make no distinction between the bicategories and the displayed361

bicategories. For K ∈ {B, D}, we write Kuniv to denote the restriction of K to univalent362

categories.363

4.1 (Co)Limits364

In this subsection, we show that the Rezk completion for categories lifts to finitely complete365

categories. It is well-known that the existence of a terminal object and pullbacks implies366

the existence of all finite limits. Hence, it is sufficient to lift the Rezk completion for those367

limits. We only discuss the lifting of pullbacks and refer the reader to the formalization for368

the result on the other limits.369
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First, we show in Lemma 14 that the image of a pullback square under a weak equivalence370

is again a pullback square. From this, we conclude in Lemma 15 that the Rezk completion371

of a category with pullbacks also has pullbacks and that the weak equivalence into the Rezk372

completion (i.e., the unit) preserves pullbacks. Then, we show in Lemma 16 that weak373

equivalences reflect pullbacks which allows us to conclude that the biadjunction given by374

the Rezk completion lifts from categories to categories with pullbacks. Combined with the375

analogous results for the terminal object, we conclude in Proposition 18 that the biadjunction376

lifts from categories to finitely complete categories.377

▶ Lemma 14 ( ). Let G : C0 → C1 be a weak equivalence. Then the image of a pullback378

square under G is again a pullback square.379

Proof. Assume that the following diagram is a pullback square in C0:380

p x2

x1 y

π2

π1 p2

p1

381

We have to show that its image under G is again a pullback square. Hence, fix z̄ : C1,382

f̄1 : z̄ → G(x1), f̄2 : z̄ → G(x2) and assume f̄1 · F (p1) = f̄2 · F (p2). Observe that383

∃ ! k̄ : z̄ → F (p), k̄ · F (π1) = f̄1 × k̄ · F (π2) = f̄2, (2)384

is a proposition. Thus, we can apply essential surjectiveness of G to get an object z : C and385

an isomorphism i : G(z) ∼= z̄. The result now follows from the usual proof that an equivalence386

of categories preserves limits. Indeed, let f1 := G−1(i · f̄1) and f2 := G−1(i · f̄2) where G−1
387

is the inverse function of the action of G on morphisms given fully faithfulness of G. Then,388

one can prove that (z, f1, f2) is a cone, where the commutativity of the diagram follows from389

the fact that a fully faithful functor reflects equality of morphisms. Hence, there exists a390

unique k : z → p such that k · π1 = f1 and k · π2 = f2. We can now show that k̄ := i−1 · G(k)391

is a proof of Equation (2) and, that k̄ is necessarily unique. ◀392

▶ Lemma 15 ( ). Let C be a category equipped with pullbacks. Then RC(C) is equipped with393

pullbacks. Furthermore, ηC : C → RC(C) preserves those pullbacks.394

Proof. Let ȳ, x̄1, x̄2 : RC(C) and p̄1 : RC(C)(x̄1, ȳ) and p̄2 : RC(C)(x̄2, ȳ). We have to395

construct the pullback of p̄1 along p̄2. Since RC(C) is univalent, the type of pullbacks of p̄1396

along p̄2 is a proposition. Hence, by essential surjectiveness there are isomorphisms of types397

ηC(y) ∼= ȳ, ηC(x1) ∼= x̄1, and ηC(x2) ∼= x̄2, for some y, x1, x2 : C. By univalence of RC(C),398

these isomorphisms correspond to identities. Hence, by induction on those identities, p̄i is399

equivalently a morphism of type RC(C)(ηC xi, ηC y) (for i = 1, 2). Thus, by fully faithfulness,400

p̄i = η(pi) for some pi : C(xi, y). That RC(C) has pullbacks now follows because we can take401

the pullback of p1 and p2 (in C) and then use that weak equivalences preserve pullbacks402

(Lemma 14). ◀403

▶ Lemma 16 ( ). Every weak equivalence reflect pullbacks.404

Let Catpb be the bicategory whose objects are categories equipped with pullbacks, whose405

morphisms are pullback preserving functors, and whose 2-cells are natural transformations.406

▶ Proposition 17 ( ). The inclusion (Catpb)univ → Catpb has a left biadjoint.407
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Proof. The first assumption of Proposition 10 has been proven in Lemma 14 and Lemma 15.408

Hence, it remains to prove that for every diagram409

C0 C1

C2

G

HF

α

(3)410

where G is a weak equivalence, we have if F preserves pullbacks, then so does H. Assume411

that the following diagram on the left is a pullback square in C1:412

p′ x′
2

x′
1 y′

π′
2

π′
1 p′

2

p′
1

H(p′) H(x′
2)

H(x′
1) H(y′)

H(π′
2)

H(π′
1) H(p′

2)

H(p′
1)

F (p) F (x2)

F (x1) F (y)

F (π2)

F (π1) F (p2)

F (p1)

(4)413

We have to show that the diagram on the middle is a pullback. Since the type expressing414

that a square is a pullback is a proposition, essential surjectiveness implies that p′, x′
1, x′

2, y′
415

are isomorphic to the image of G of some objects p, x1, x2, y : C0. Furhermore, by fully416

faithfulness of G, the p′
i’s and π′

i’s correspond uniquely with morphisms in C0. More precisely,417

we define πi := G−1 (
jp · π′

i · j−1
xi

)
: C0(p, xi) and pi := G−1 (

jxi
· p′

i · j−1
y

)
: C0(xi, y), where418

the j’s are the isomorphisms given by essential surjectiveness. Since (π′
1, π′

2) is a pullback of419

(p′
1, p′

2), and since weak equivalences reflect pullbacks, (π1, π2) is a pullback of (p1, p2). Now,420

since F preserves pullbacks, we have that the right diagram in 4 is a pullback square. The421

claim now follows since the middle and right diagram are equivalent by α. ◀422

Let FinLim be the bicategory whose objects are categories equipped with a terminal object423

and pullbacks, whose morphisms are functors preserving those limits, and whose 2-cells are424

natural transformations. This bicategory is defined via the product for displayed bicategories.425

▶ Proposition 18 ( ). The inclusion FinLimuniv → FinLim has a left biadjoint.426

We define the bicategory FinColim of finitely cocomplete categories similarly. That is, as427

the product of displayed bicategories encoding binary coproducts, and coequalizers:428

▶ Corollary 19 ( ). The inclusion of FinColimuniv → FinColim has a left biadjoint.429

Proof. This follows from the duality between limits and colimits and the fact that the430

opposite of weak equivalence is a weak equivalence between the opposite categories. ◀431

▶ Remark 20 (Infinite (co)limits). Whereas (strong) equivalences of categories create arbitrary432

(co)limits, there is no reason for weak equivalences to create infinitary (co)limits, even if one433

assume the codomain to be univalent. Indeed, let ηC : C → RC(C) be the Rezk completion434

and assume (xi)i:I is a product cone in RC(C). Since the type of products for (xi)i is a435

proposition, essential surjectivity could be used to an individual xi, or a finite set, but not436

all simultaneously.437

4.2 Subobject Classifier438

In this subsection, we show that the Rezk completion for finitely complete categories lifts to439

such categories with a subobject classifier. We take the same steps as before. That is, we440

first show in Lemma 22 that the image of a subobject classifier is again a subobject classifier441
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and then we show in Proposition 23 that the factorization of a subobject classifier preserving442

functor along a weak equivalence again preserves subobject classifiers. Both proofs also rely443

on the interaction between monomorphisms and weak equivalences (Lemma 21).444

Let C be a category with a terminal object T . Recall that a subobject classifier consists445

of an object Ω : C and a monomorphism τ : C(T, Ω), which furthermore satisfies the following446

universal property. For every mono f : C(x, y), there is a unique morphism χf : C(y, Ω) such447

that the following diagram commutes and is a pullback square:448

x T

y Ω

!

f τ

χf

449

We refer to τ as the truth map.450

Recall that a morphism f : C(x, y) is a monomorphism if and only if451

x x

x y

f

f

452

is a pullback square.453

▶ Lemma 21 ( ). Weak equivalences preserve and reflect monomorphisms.454

Recall that if G is a weak equivalence and T0 a terminal object, then G(T0) is terminal.455

Lemma 22 follows since weak equivalences preserve pullbacks:456

▶ Lemma 22 ( ). Let G : C0 → C1 be a weak equivalence between categories with a457

terminal object, denoted T0 and T1 respectively. Let ! be the unique morphism from T1 to458

F (T0). If (Ω, τ : T0 → Ω) is a subobject classifier, then so is F (Ω) whose truth map is459

! · F (τ) : T1 → F (Ω).460

Recall that a functor F : C0 → C1 between categories with a terminal object, denoted Ti461

for i = 0, 1, and a subobject classifier (Ωi, τi) preserves the subobject classifier if one of the462

following two equivalent conditions hold:463

1.
(

F (Ω0), T1
!−→ F (T0) F (τ0)−−−→ F (Ω0)

)
is a subobject classifier in C1;464

2. there is an isomorphism i : F (Ω0) ≃ Ω1 such that F (τ0) · i = !−1 · τ1.465

Let FinLimΩ be the bicategory whose objects are finitely complete categories equipped with466

a subobject classifier and whose morphisms are functors that preserve finite limits and the467

subobject classifier.468

▶ Proposition 23 ( ). The inclusion (FinLimΩ)univ → FinLimΩ has a left biadjoint.469

Proof. Again, it suffices to verify the conditions given in Proposition 10. The first condition470

is an immediate consequence of Lemma 22. The second condition follows because subobject471

classifiers are unique up to isomorphism and since weak equivalences reflect subobject472

classifiers. ◀473

4.3 Cartesian Closedness474

Now, we lift the Rezk completion from categories to cartesian closed categories, which475

concludes the first part in Theorem 12. We already know that the Rezk completion extends to476
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finite products. Hence, it remains to verify that the Rezk completion extends to exponentials.477

Again, we apply the same approach as in the previous subsections.478

Recall that an object x : C in a category with binary products is exponentiable if479

− × x : C → C has a right adjoint, which is denoted as (−)x : C → C. That is, for every480

y : C there are given an object yx : C and a morphism ev := evx,y : C(yx × x, y) which is481

universal in the sense that (yx, ev) is the terminal such pair. The object yx is referred to482

as the exponential of x with y, and evx,y is referred to as the evaluation morphism. We say483

that a category is cartesian closed if it has binary products and all exponentials.484

Recall that the Rezk completion lifts to categories with binary products. In particular,485

there is a necessarily unique isomorphism µ := µx,y : η(x) × η(y) ∼= η(x × y), for every x, y : C486

and natural in x and y.487

▶ Lemma 24 ( ). Let C0 be a cartesian closed category and G : C0 → C1 a weak equivalence.488

Then, the image of an exponential, under G is again an exponential. That is, if (yx, ev) is489

an exponential of x with y, then (G(yx), G(ev)) is an exponential of G(x) with G(y).490

A cartesian closed functor is a binary product preserving functor F : C0 → C1491

between cartesian closed categories which preserves exponentials. That is, for every492

x, y : C0 the unique morphism from F (yx) to F (y)F (x) is an isomorphism. The bicategory of493

cartesian closed categories, cartesian closed functors, and natural transformations is denoted494

CCC. Since exponentials are unique up to isomorphism, the preservation of exponentials is495

equivalent to the statement that the image of an exponential object is again an exponential496

object as in Lemma 24. Hence, Lemma 24 implies the first two conditions in Proposition 10497

applied to D := CCC.498

▶ Proposition 25 ( ). The inclusion CCCuniv → CCC has a left biadjoint.499

Hence, by combining Proposition 18, Proposition 23, and Proposition 25, we lifted the500

Rezk completion from categories to elementary topoi, which concludes the first part in501

Theorem 12.502

4.4 Paramaterized NNO503

We now prove the furthermore clause in Theorem 12. That is, the Rezk completion preserves504

(parameterized) natural numbers objects.505

The most common way to interpret, or axiomatize, the object of natural numbers in a506

category leads to the definition of a natural numbers object. Nonetheless, in the absence of507

exponentials, there is a more appropriate interpretation by weakening the recursion principle508

and is known as a parameterized natural numbers object [11]. We work with the more509

general version.510

A parameterized natural numbers object (NNO) in a category C with finite products511

is a tuple (N, z, s) where N : C is an object and z : C(T,N), s : C(N,N) are morphisms which512

satisfies the following universal property: for every tuple (t : C, m : C, z′ : C(t, m), s′ :513

C(m, m)), there exists a unique f : C(t × N, m) such that the following diagram commutes:514

t t × N t × N

m m

⟨idt , !·z⟩

z′ f f

id×s

s′

515

Recall that the image of a terminal object under a weak equivalence is again terminal.516
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▶ Lemma 26 ( ). Let G : C0 → C1 be a weak equivalence where both C0 and C1 have binary517

products. Assume that N : C0, z : C0(T0,N), and s : C0(N,N) are given. Then (N, z, s) is an518

NNO if and only if (G(N), G(z), G(s)) is an NNO.519

Let CatN be the bicategory whose objects are cartesian categories equipped with a520

parameterized NNO, and whose morphisms are terminal preserving functors F : C0 → C1521

such that the unique morphism from N1 → F (N0), induced by the universal property of the522

NNO, is an isomorphism.523

▶ Proposition 27 ( ). The inclusion (CatN)univ → CatN has a left biadjoint.524

▶ Corollary 28 ( ). The left biadjoint RC lifts to elementary topoi with NNO’s.525

5 Related Work526

We elaborate on the different methods to extend the Rezk completion to categories with527

structure found in the literature.528

In [4], the Rezk completion has been extended to, in particular, categories with families529

(CwFs). That is, they showed that for weak equivalence into a univalent category (i.e.,530

the Rezk completion), induces a map from the type of CwFs on the domain to the type531

of CwFs on the codomain. Furthermore, they showed that for every weak equivalence one532

has an equivalence between the representable map structures on the involved categories.533

These results allowed them to prove that there is an equivalence between representable534

maps of presheaves on a category and the CwFs on its Rezk completion. While our focus535

has been on displayed bicategories with contractible 2-cells, CwFs and representable maps536

require propositional 2-cells. Nonetheless, Proposition 10 could be slightly generalized to537

have propositional 2-cells. In particular, we expect our methodology to also work for these538

structures.539

In [20], it was proven that the inclusion of the bicategory of univalent groupoids into540

the bicategory all groupoids admits a left biadjoint. Furthermore, it was shown that this541

biadjoint lifts to a variety of structures on groupoids. However, instead of considering each542

structure individually, as we have done, [20] presented a signature for higher inductive types543

to encode structure on groupoids and then showed that the structure definable by such HITs544

induces a left biadjoint for the inclusion of structured univalent groupoids into structured545

groupoids. In particular, [20] considers algebraic structure where as we consider universal546

structure on categories. Furthermore, while we work with biadjoints in terms of equivalences547

between hom-categories, [20] working with biadjoints in terms of the unit-counit description.548

In [23], the Rezk completion has been extended to monoidal categories. In particular, they549

also proved that the biadjoint given by the Rezk completion lifts from categories to monoidal550

categories, although not in the exact same words. The approach considered here differs in551

the following way. First, we do not rely on the universal property of weak equivalences and552

the Rezk completion. Instead, we show the lifting in terms of weak equivalences. Second,553

whereas in [23], they relied on displayed categories to lift the equivalence on hom-categories,554

we now rely on displayed bicategories to formulate displayed biadjunctions/universal arrows.555

Instead of working with abstract Rezk completions, one can also try to use a concrete556

implementation of the Rezk completion, either via the presheaf construction, or via higher557

inductive types. In [23], it was furthermore sketched how the presheaf construction inherits a558

monoidal structure by considering the Day convolution structure on the category of presheaves.559

In [19], both implementations of the Rezk completion have been extended to the setting of560

enriched categories. However, as opposed to the monoidal case, some modifications have561
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been done. First, the notion of fully faithfulness, and hence weak equivalence, has to be562

adapted to take the enrichment into account. Nonetheless, [19] showed that such weak563

equivalences imply an equivalence on the enriched functor categories, similar universal to564

the (non-enriched) weak equivalences. Second, as opposed to the monoidal Rezk completion,565

[19] considered enriched presheaves, as opposed to Set-valued presheaves. Furthermore,566

while the presheaf construction has been adapted, the HIT construction for the enriched567

Rezk completion shows that the underlying category of the enriched Rezk completion is the568

ordinary Rezk completion.569

6 Conclusion570

We have presented a modular framework for the lifting of Rezk completions from categories571

to categories with structures and concluded that the Rezk completion of an elementary topos572

is again an elementary topos. In particular, our main result implies that the interpretation573

of type-formers and logical constructs is preserved under the Rezk completion.574

There are multiple ways in which this work can be extended. First, in [1], it is proven575

that the presheaf construction for the Rezk completion of (1-)categories induces a similar576

result when passing to (locally univalent) bicategories. Hence, there is the question of how577

the results presented here categorify to higher categories and topoi (see e. g. , [15, 22]).578

Second, we can compose the tripos-to-topos construction with the Rezk completion for579

topoi, which provides a tripos-to-univalent-topos construction. Nonetheless, if one uses this580

construction to get realizability topoi, it remains to be seen whether the obtained topoi share581

the same structures and properties as realizability topoi. Hence, one would need to verify582

the properties of the Giraud-like theorem for realizability topoi [8].583

Third, there are more categorical structures one can consider. One such example is locally584

cartesian closedness, used to interpret Π-types. We expect this to follow from the results585

about cartesian closed categories presented above and the fact that taking slice categories is586

well-behaved with respect to weak equivalences. One can also consider examples outside of587

topos theory. For example, abelian categories can be characterized in an enrichment-free way588

using (finitary) universal constructions, whose preservation properties should follow from the589

above.590
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